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How to Read This Paper

This is a mathematics monograph about a non-mathematical subject. 
As a mathematics paper, we will include theorems and proofs. It is 
not expected that the non-mathematically-inclined reader will wade 
through these proofs, or even the more symbol-laden definitions or 
statements of theorems. We do hope, however, that no reader will be 
dissuaded by the more technical portions of this paper, that he instead 
will choose to pass over them if the waters appear too rough; and 
we hope that all readers will at least be able to appreciate our main 
conclusions, the definitions of poset, cutset, and tree, and our elucidation 
of the structure of the “perfect” tree. At the same time, we hope more 
mathematical audiences will forgive the simplicity and verbosity of our 
exposition. When we write statements like “let b≥2,” we mean, “Let b 
be a positive integer greater than or equal to 2.” If a set S has k elements, 
we write “|S|=k.”





Today we lack metrics to know if we are winning or 
losing the global war on terror.

 U.S. Secretary of Defense Donald Rumsfeld1

0. A Return to Bletchley Park
When U.S. Secretary of Defense Donald Rumsfeld was making the 

above statement, the RAND journal Studies in Conflict and Terrorism 
was already attempting to address his concern (Farley 200��). Wars are 
composed of battles, so presumably the war on terror is composed—at 
least in part—of battles against terrorist cells.2 But how can one tell if 
those battles have been won?

One could ask for the annihilation of the opposing side, but surely 
that is too crude a measure; Paris’s Troy may have been sacked, but not 
Petain’s Paris.��

One could declare a battle won if the terrorist cell has not conducted 
an attack, but of course it is the potential for attack that is the chief 
concern. How can we measure that?

In the first part of this paper, we will review a mathematical model 
for answering questions like this. This model has many shortcomings, 
but also perhaps some uses; details and suggestions for possible 
improvements will be found below.

But if one accepts the formalism of the model, with a few additional—
and, we trust, reasonable—assumptions, one can ask, “What is the 
structure of the ‘perfect’ terrorist cell? the most robust terrorist cell? the 
cell that is least likely to be disrupted if a certain number of its members 
have been captured or killed?”4 This becomes a precise mathematical 
question, which we address in the latter part of this paper. Finally we 
propose additional mathematics problems engendered by our research; 
we hope government investigators, academics, and students will pursue 
them.
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1. The Pentagon’s New Math

In March 2006, The New York Times Magazine published an article 
entitled, “Can Network Theory Thwart Terrorists?”5 When terrorist 
cells are depicted schematically, they are often shown as structures 
called graphs. These are not the graphs readers may have plotted in 
high school algebra, but collections of dots (called nodes), representing 
individuals, and lines (called edges) between nodes, representing any 
sort of relationship between the two corresponding individuals, such as 
a direct communications link. In Krebs 2002 [figure 1.1(i)], one finds 
graphs of the alleged September 11 hijackers,6 and Rodríguez 2005 
contains graphs of the alleged Madrid bombers. Of course a graph can 
represent any sort of social network, not just terrorists; for instance, 
your network of friends (Friendster 2006) or the leadership of the U.S. 
government [figure 1.1(ii)]. The graph of figure 1.2 represents a cell 
whose structure is given by telephone contacts. Of course, the physical 
location of a node in the real world or on the page or screen is less 
relevant than data about which node is connected to which.

The usual game is to identify what nodes to remove (corresponding 
to capturing or killing an enemy agent) in order to break up or disrupt 
a terrorist cell like that of figure 1.��. In figure 1.��(ii), certain nodes have 
been removed. The network is now disconnected: it has been broken up 
into several components that are not themselves joined by lines. The 
network has been disrupted.

Or has it? Consider the organization chart of a terrorist cell such as 
figure 1.4. In this picture, the top-to-bottom hierarchy is important: 
agents A, B, and C at the top of the picture are the leaders of the cell; 
agents I, J, and K at the bottom of the picture are the foot soldiers. 
Even if we remove agents E, G, and Kone quarter of the network 
[figure 1.4(ii)]there is still a complete chain of command from A 
down to I (through D and F). Presumably terrorist cell leader A could 
transmit attack plans down to foot soldier I, so the cell remains a threat. 
Even though it has been disconnected, it has not been “disrupted.”

The above example illustrates one reason why the graph-theoretic 
perspective is inadequate. (Others can be found in Farley 2006.) More 
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structure is needed: the actual hierarchy of the cell. A partially ordered 
set, or poset, is such a structure, and lattice theory is the branch of 
mathematics that deals with such structures. Below we will delve into 
posets in more detail, but first we give a brief overview.

A poset in our setting is just a fancy name for an organization chart. 
As with figure 1.4, the nodes at the top represent the people at the top 
of the organization; the nodes at the bottom represent the people at the 
bottom.7 The difference between a poset and a graph is illustrated in 
figure 1.5. All a graph tells you is who is connected with whom [figure 
1.5(i)]. It does not say whether the middle figure is the boss [figure 
1.5(ii)] or the subordinate [figure 1.5(iii)]. [In mathematical parlance, 
the poset in figure 1.5(ii) is the dual of the poset in figure 1.5(iii)one 
is the other, upside-down.]

Partially ordered sets are not wholly unfamiliar creatures. The set of 
all numbers [figure 1.6(i)] is a poset; equivalently, we could be looking 
at four military officers, a general, a colonel, a major, and a captain 
[figure 1.6(ii)]. (We call such simply ordered posets chains.) In fact, as 
with numbers, the notation “a≤b” is used to indicate that a is either the 
same person as b (a=b), or else a is a subordinate of b (a<b), albeit not 
necessarily an immediate subordinate.

The advantage of this type of abstraction is that we do not need to 
be concerned (at least, at this level of analysis) with the precise mode 
by which two individuals communicateby cell phone, email, Morse 
code, smoke signals, or ads in The Washington Timeswe are only 
concerned with whether or not two individuals do or do not directly 
communicate.8

So the new model is that terrorist plans are formulated by the nodes 
at the top of the organization chart or poset (the leaders or maximal 
nodes); these plans are then transmitted down via the edges to the nodes 
at the bottom (the foot soldiers or minimal nodes), who presumably 
execute those plans (figure 1.7). The message, we assume, only needs 
to reach one foot soldier for damage to result. For example, suppose 
the poset represents a courier network. Only one messenger needs to 
succeed in parlaying the message; but the message must get through. 
We endeavor to block all routes from the maximal nodes (any one of 
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those nodes) to the minimal nodes (any one of them) by capturing or 
killing some subset of the agents. Note that the agents we remove need 
not be maximal or minimal (figure 1.8). Such a subset is called a cutset. 
The set of k-member cutsets in a poset P is denoted Cut(P,k).9

Imagine that the poset represents a system of pipes, down which 
water (information) may flow. Each node is a faucet, which can be 
on (letting water flow through) or off. If water only enters the system 
through the top, and all the faucets are initially on, we wish to find a 
collection of faucets to shut off so that no water drips off the bottom of 
the diagram. This cutset “cuts off” the flow of water, or, in the terrorism 
context, it cuts off the leaders from the foot soldiers.

In figure 1.9, we illustrate (inside the polygonal shape) a complete 
chain of command, or maximal chain; inside the oval we enclose the 
minimal nodes (these also form a cutset); the lighter circles represent 
another cutset; the darker circles a third cutset.

If k is a number, and k terrorists are killed or captured at random, 
the probability we have found a cutset (and hence disrupted the cell, 
according to our newer model) is the number of cutsets of size k divided 
by the total number of subsets of size k.10

A Mathematical Criterion for Determining 
Victory in the Shadow War?

In the war on terror, how can we tell if we have won a battle?

Gordon Woo, a Catastrophe Consultant for the company Risk 
Management Solutions, has suggested modeling terrorist cells as graphs 
or networks—that is, as collections of points or nodes connected by 
lines. The nodes represent individual terrorists, and a line is drawn 
between two nodes if the two individuals have a direct communications 
link. Figure 1.10 illustrates an organization with four members, Mel, 
Jean-Claude, Arnold, and Sylvester. Mel, Jean-Claude, and Arnold 
share a flat in Hamburg and communicate directly with each other, 
but Sylvester communicates only with Jean-Claude.
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The task of law enforcement is to remove nodes from a graph 
representing a terrorist cell by capturing or killing members of that 
cell so that its organizational structure is disrupted. Woo suggests 
modeling this idea mathematically by asking the following question: 
How many nodes must you remove from the graph before it becomes 
disconnected (that is, before it separates into two or more pieces)? We 
might call this the Connectedness Criterion.11

Figure 1.11(i) illustrates a terrorist network Γ with seven members. 
If terrorist A is captured, the six remaining nodes are still connected 
and remain a cohesive whole [figure 1.11(ii)]. If, on the other hand, 
terrorists E and G are captured, then the graph breaks up into two 
parts that can no longer communicate directly with one another [figure 
1.11(iii)]. 

There is a growing literature on modeling terrorist networks as 
graphs, an outgrowth of the existing literature concerning other types 
of criminal networks.12 There is also literature on destabilizing networks, 
modeled as graphs, by seeing how connections do or do not dissipate 
when nodes are removed (Carley, Lee, and Krackhardt 2002).1��

Our view is that modeling terrorist cells as graphs does not give 
us enough information to deal with the threat. Modeling terrorist 
cells as graphs ignores an important aspect of their structure, namely, 
their hierarchy, and the fact that they are composed of leaders and 
of followers. It is not enough simply to seek to disconnect terrorist 
networks. For while doing so may succeed in creating two clusters of 
terrorists incapable of communicating directly with each other, one of 
the clusters may yet contain a leader and enough followers to carry out 
a devastating attack.14

For example, consider the terrorist cell depicted in figure 1.12. If 
terrorists B and E were captured, the remaining cell would certainly be 
disconnected. Indeed, the cell would be broken into three components 
(figure 1.1��). Nonetheless, there would still be a chain of command 
from the leader A down to two foot soldiers (J and K) capable of 
carrying out attacks.
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The proper framework for our investigations is therefore that of 
order theory.15 We do not merely want to break up terrorist networks 
into disconnected (non-communicating) parts. We want also to cut 
the leaders off from the followers. If we do that, then we can reasonably 
claim to have neutralized the network.

Why does this matter? It may not always be feasible to capture 
every member of a terrorist cell. It may not even be cost-effective to 
capture a majority of the members. The analysis we present below will 
enable intelligence agencies to estimate better the number of terrorist 
agents they must eliminate in order to cripple a cell. That way they 
may decide—based on quantitative information—how many millions 
of dollars they wish to devote towards targeting a particular cell, or 
whether they wish to spend their scarce resources in another theater of 
operations in the war on terror.

Refinements of our ideas should enable intelligence agencies to 
state, for example, that they are 85% certain that they have broken the 
terrorist cell they are investigating. Of course, our definition of what it 
means to have “broken” a terrorist cell is something one could debate, 
for even lone actors—from the Unabomber to the Shoe Bomber—can 
inflict serious damage. And we recognize the fact that, even if we are 
85% sure that we have broken a terrorist cell, there is still a 15% chance 
that we have not—and hence there remains a chance that terrorists 
might commit another September 11. Nevertheless, law enforcement 
and intelligence agencies must allocate money and personnel, and our 
analysis would enable them to do so more rationally than at present.16

Breaking the Chains of Command

A common way to represent visually a group of people and the 
relationships between them is by means of a graph or network. We have 
seen several examples already. The individuals are represented by dots or 
nodes, and if two individuals are related in some fashion (for instance, 
if they are friends), then a line is drawn between the corresponding 
nodes. In the case of a terrorist cell, one might draw a line if the two 
individuals can communicate directly with one another.
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A graph inadequately represents a terrorist cell, however, because 
it fails to capture the fact that, in any cell, there will most likely be 
a hierarchy—leaders and followers—with orders passed down from 
leaders to followers. Figure 1.5 makes this point clear.

All three graphs represent three people, Mary, James, and Robin. 
Mary can communicate to both James and Robin; Robin and James 
can each communicate only to Mary. What the graphs fail to capture 
is the fact that Mary might be the boss with two employees reporting 
to her, as in the middle picture, or Mary might be a secretary shared by 
two professors, as in the final picture. The last two pictures represent 
the same relationship-graph but different ordered sets.

Note that lines only connect individuals who are directly related to 
one another. It is unlikely that a general would communicate directly 
with a lieutenant. Of course a given general would normally have more 
than one colonel reporting to him, with neither colonel subordinate 
to the other, so in general we would not have a total order but a partial 
order.

Is it valid to use ordered sets to model terrorist cells? In his study 
of criminal networks, Klerks (Klerks 2002) argues that we should not 
assume that criminal networks are organized hierarchically simply 
because law enforcement agencies are so organized. If we were to 
follow Klerks, we would not be so quick to model criminal networks 
as ordered sets. But while Klerks’ conclusions may be valid for ordinary 
criminal networks, it seems as if terrorist networks are in fact organized 
hierarchically, sometimes even along military lines.

Now suppose operations are being conducted against a specific 
terrorist cell. Short of capturing all of its members, how can we 
ascertain whether or not we have successfully disabled the cell? One 
criterion might be to say that a terrorist cell has been broken if it is no 
longer able to pass orders down from the leaders to the foot soldiers—
the men and women who, presumably, would carry out the attacks. 
This is by no means the only possible criterion, but it enables us to 
make more reasonable quantitative estimates of the possibility that our 
operations have successfully disabled a terrorist cell.
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The leaders are represented by the topmost nodes in the diagram of 
the ordered set, and the foot soldiers are represented by the bottommost 
nodes. (In order theory, these are called maximal and minimal nodes, 
respectively.) A chain of command linking a leader with a foot soldier 
is called a maximal chain in the ordered set.

In figure 1.4(i), the four agents C, E, F, and J form a maximal chain 
with the ordering from highest rank to lowest rank being C>E>F>J. 
We could also more simply write CEFJ.

Below we list all of the maximal chains:
 ADFI ADFJ ADGI ADGK
 AEFI AEFJ AEHJ
 BEFI BEFJ BEHJ
 CEFI CEFJ CEHJ
 CK
Each of these chains represents a chain of command through which 

terrorist leaders A, B, and C could pass instructions down to terrorist 
foot soldiers I, J, and K. In order to prevent such orders from being 
passed down and carried out, each of these 14 chains must be broken 
by means of the removal (death or capture) of at least one agent from 
each chain. A collection of nodes that intersects every maximal chain is 
called a cutset. (See El-Zahar and Zaguia 1986.)

In figure 1.4(i), the collection DEK forms a cutset, since every one 
of the maximal chains above contains one of D, E, and K. Another 
cutset would be ABC. The collection DGHK would not be a cutset 
since it misses the maximal chain CEFJ.

Quantifying the Effectiveness of an Operation 
against a Terrorist Cell

In what way can law enforcement quantify how effective it has been 
in disrupting a particular terrorist cell? As we have stated, one way to 
make this precise is to say that a terrorist cell has been disrupted not 
when all of its members have been captured or killed (which might be 
too costly in terms of money, agents, and agents’ time), but when all 
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chains of command have been broken. That is, the collection of nodes 
in the network corresponding to the terrorists who have been killed or 
captured should be a cutset.

This enables us to calculate—not merely guess—the probability 
that a terrorist cell has been disrupted. Let Γ be a terrorist cell with 
n members (n=19 in the case of the alleged September 11 hijackers). 
Denote by Pr(Γ,k) the probability that Γ has been disrupted once k 
members have been captured or killed, where k is some whole number. 
Let Cut(Γ,k) be the number of cutsets in the ordered set Γ with k 
members. Then

the probability terrorist cell Γ has been broken
after k members have been captured = Pr(Γ,k)

where 
!

!( )!
n n
k k n k

 
=  − 

 and r!=r(r-1)(r-2)•…��•2•1 for a positive

whole number r.

For example, consider the terrorist cell T with n=15 members in 
figure 1.14. What is the probability Pr(T,4) that T will be broken if 
k=4 members are captured or killed? We must first find the number of 
cutsets Cut(T,4) with 4 members. To do this, let us count the number 
of minimal cutsets with 4 or fewer members. These are the cutsets that 
cease to be cutsets if we ignore any one of the members.

minimal cutsets with 1 member A
minimal cutsets with 2 members BC
minimal cutsets with �� members BFG  CDE
minimal cutsets with 4 members BFNO  BGLM
     CDJK  CEHI
     DEFG

A simple calculation shows that the number of 4-member cutsets 
Cut(T,4) is

( )Cut ,k
n
k

Γ
 
 
 

=
Cut(Γ,k )
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14 12 15
10 10 5 455

3 2 3
     

+ + + + = =     
     

so

( ) 455 455 1Pr ,4
15 1365 3
4

T = = =
 
 
 

This means that our chances are 1 out of �� that we will have broken 
this terrorist cell once we have captured 4 of its members. (We are 
assuming that we are as likely to capture the leader A as a foot soldier 
such as J.) Perhaps we will get lucky and the first four people we capture 
will be A, B, C, and D, in which case the cell T will have been broken. 
But we might also be unlucky and only capture D, H, I, and J, leaving 
several chains of command—like A>C>G>O—intact and capable of 
committing terrorist attacks. 

The fact that Pr(T,4) =  means that we are twice as likely to be 
unlucky as lucky.

Note that if we were to use the Connectedness Criterion, which 
involves asking for the probability that T will become disconnected if 
we remove 4 members, then we would get a probability of

8
4 6

4 12711 0.93
15 1365
4

•
 

+ 
 − = >

 
 
 

In other words, we would feel 9��% “safe” when in fact we would 
only be ����% “safe.”

1
��

.

.
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Warning Shots: Shortcomings of, and 
Possible Improvements to, the “Break the 
Chains” Model

There are many ways our model could be improved. First, we 
do not consider the situation where there are several terrorists in a 
particular cell who have the same rank. (For instance, suppose two or 
more terrorists share the same apartment in Hamburg. All of them 
are in direct communication with one another, but none of them 
outranks the others.) This can be handled by considering preordered or 
quasiordered sets.17

Second, we could consider the fact that terrorist operations take time. 
For instance, suppose agent B of figure 1.15 is captured on Wednesday, 
thus breaking that terrorist cell. Perhaps agent A passed down plans to 
B on Monday, and on Tuesday B passed those attack plans down to C. 
Then there might still be an attack even though the cell was broken.

Counterterrorist operations also take time. For instance, after B’s 
capture, the cell will be broken. But if too much time passes, the cell 
may reorganize [figure 1.15(iii)]. For a general ordered set, the collection 
of cutsets will change after a reorganization. But, assuming the changes 
are local (that is, if they only involve a node and its neighboring nodes), 
this situation, too, can be handled with only a slightly more detailed 
analysis.18

Instead of assuming that the terrorists are removed simultaneously 
and that terrorist plans are transmitted instantaneously, queuing theory 
(see for instance Wein and Liu 2005) might give us a better model, or 
perhaps we could do experiments like McGough 2005. 

Third, we assumed in our model that all the terrorists had an equal 
chance of getting captured. In reality, it may be the case that foot 
soldiers have the highest chance of being captured, since they are less 
well protected. Or it may be the case that leaders and foot soldiers 
are more likely to be captured than middle-level captains, since law 
enforcement might place a greater emphasis on capturing prominent 
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leaders than middle-level ones. Our overall analysis, however, remains 
the same even if we vary the probability distribution.

And although we assume that every terrorist has the same chance 
of being captured, whereas in reality some would be hard to catch and 
some not, from the terrorists’ point of view, even if the United States 
were to target, say, the leaders or the foot soldiers more, obviously 
the terrorists cannot predict who will be arrested next (or else they 
would be able to evade capture). The safest way for them to model the 
situation (if they wanted to design the perfect cell) would be in fact to 
assume a “uniform probability distribution.” Another idea that stems 
from this is an interesting metric of the importance of an individual X 
in a cell: given that we have captured a cutset, what is the probability 
we have captured X?19

Our model has more shortcomings. For instance, we do not 
necessarily know the structure of the particular terrorist cell under 
investigation. A priori, it could be any ordered set. A naive way around 
this might be to try to calculate Pr(Γ,k) for every possible ordered set Γ. 
This option is not feasible, however, as there are 4,48��,1��0,665,195,087 
possible ordered sets to which a 16-member cell (for instance) might 
correspond (Brinkmann and McKay 2002).

In fact, the situation is not as bleak as that. The order structure 
of a terrorist cell Γ is an empirical question. Presumably intelligence 
sources can tell us who the leaders are, who the captains are, and who 
the foot soldiers are. There are also tools available for piecing together 
the structure of a terrorist network (Dombroski and Carley 2002).

It is likely that terrorist cells are organized as trees (e.g., figures 
2.2, 2.��, and 2.9), a common type of organizational structure. Trees 
have exactly one maximal elementcorresponding to the fact that a 
terrorist cell, like a military unit, probably has just one leaderand 
no portion of a tree resembles the “V” structure of figure 2.6. This 
corresponds to the fact that it is unlikely that a terrorist would have 
direct contact with more than one superior: if he were captured, he 
could give away information about several other conspirators more 
valuable than himself. Another argument is that only in a tree can you 



Toward a MaTheMaTical Theory of counTerTerrorisM 1��

avoid the situation of non-complementary commands being issued to 
an agent from two different leaders.20

Of course, there are still 2��5,��81 possible “tree” structures to which 
a 16-member cell might correspond (Sloane). We can eliminate most 
trees, however, as it is unlikely that a terrorist cell would have more 
than 20 or ��0 members, and the hierarchy would probably have no 
more than 5 levels. This, along with empirical data concerning the 
cell under investigation, greatly reduces the number of possible order 
structures the cell might have.

Our model has more serious problems, however, namely its two 
assumptions. First, we assume that terrorist attacks occur when orders 
are passed down from leaders to foot soldiers. It may be instead that 
some terrorists act on their own (for instance, the so-called “Shoe 
Bomber”). This does not invalidate our model, though, as in these cases 
the terrorists are not properly part of a larger cell at all, but instead 
effectively form their own one-man cell.

Second, critics might charge that being 90% sure that a cell has been 
broken may be dangerously misleading. Even a 10% chance that another 
September 11 might occur gives the public little comfort. Nonetheless, 
decisions do have to be made about how to allocate scarce resources 
in the war against terror, and even when terrorist attacks do succeed, 
intelligence agencies will want quantitative data at their disposal to 
defend themselves from the ensuing public criticism (concerning why 
they did not devote the resources necessary to foil the attack). Our 
model enables law enforcement to plan its operations in less of an ad 
hoc fashion than they might be able to do otherwise.

One issue that deserves attention is the problem of redundancy. 
We know that it is good to safeguard a system by adding redundant 
components (although caution is urged by Perrow 1984). In most 
of our examples, if you remove a terrorist, no other terrorist has 
precisely the same connections as the removed individual. Where is the 
redundancy in our model? We have already said that redundancy could 
be incorporated by using quasiordered instead of partially ordered sets, 
but in fact redundancy already exists: the mere existence of multiple 
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chains of command by which terrorist plans could be transmitted 
represents redundancy.21

Laura Donohue has objected to this sort of model by asking how one 
distinguishes between the very different types of terrorist organizations, 
from the KKK and Al Qaeda to the IRA.22 It is true that there is much 
that “pure” models fail to take into account. (We do not, for instance, 
get into how the cell members communicate or cryptological matters.)2�� 
It would be very interesting to see if data could be found relating to this 
issue. But our response is that we are not trying to precisely describe 
reality (although we believe our assumptions are not unduly unrealistic). 
That task is for experts in fields like cultural anthropology, psychology, 
criminology, and intelligence. We are merely trying to provide decision-
making tools to people in law enforcement and intelligence, something 
better than guessing.

2. Of Terrorists and Trees

In this section we will begin to try to determine the structure of 
the perfect terrorist cell.24 There are two arguments in favor of trying 
to do this. The first is that, where we do have gaps in our knowledge 
of the structure of a cell, it is best to fill them in with the best possible 
structureit is better to assume that terrorists are smart rather than 
stupid. (They may also have discovered the ideal structure through 
evolutionary processes.) Perhaps this will help us see into the shadow 
when drawing the map of terrorist networks. The second relates to 
the possibility that, by studying our work, terrorists could learn the 
most effective ways to organize. That, however, could be to our benefit 
because, if they do, it will decrease the possible number of organizational 
schemes from, say, 4 quadrillion (the number of ways a 16-member 
cell could organize) to something far more manageable and far easier 
to analyze.  As with a jigsaw puzzle, the range of possibilities that law 
enforcement would need to consider would be reduced so that, when 
they capture someone, they might be able to deduce where he could fit 
in the organization. 

Given all the assumptions of the previous section, our task translates 
into the following mathematical question:
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Question. What partially ordered set with n elements (members) 
has the fewest cutsets of size k?

The answer is trivial: an antichain (figure 2.1), a poset with n members 
such that no two are connected by lines. This is so because each member 
is both a leader and a foot soldier, and so constitutes a maximal chain 
all by himself. Hence, to break all the chains of command, you have to 
capture all n members. Therefore, there are no cutsets of size k if k<n, 
and (exactly) one if k=n. (Every poset of size n has exactly one cutset of 
size n, namely the entire poset.)

As long as the poset has at least two members, however, the antichain 
is disconnected; there are at least two parts that are for all intents 
and purposes independent. It seems as if a terrorist cell ought to be a 
connected poset.

A simple way to avoid having a disconnected poset is to have the 
(almost) “flat” structure of figure 2.2 – one leader with n-1 (say, 18) 
followers: Unless you capture the leader, you must capture all the 
followers. But this may be unrealistic as well: it may be hard for 
one person to manage a large number of immediate subordinates.25 
Moreover, it is reasonable to suppose that the more direct links you 
have with other terrorists (the greater the degree of the node, in graph 
theory parlance), the greater the likelihood of betrayal: any one of the 
18 could be captured and give you away. (For similar considerations 
see Gunther and Hartnell 1978.) Moreover, it may be the case that 
terrorists would not even want to take the small—but appreciable—risk 
that the whole cell could unravel with the capture of a single person. So 
another reasonable assumption is that there should be a (small) bound 
b on the number of immediate subordinates each person can have. (For 
instance, b might be �� or 4.)

Definition. Let b≥1. A poset is b-ary if no member has more than b 
immediate subordinates. If b=2, we call such a poset binary.

Example. The poset in figure 2.8 is binary. Note we are not saying 
that every element must have exactly b immediate subordinates. The 
poset in figure 2.�� is ternary (��-ary) but not binary.
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Of course the poset in figure 2.4 is binary, but seems unrealistic 
because half the cell members are “leaders.” So perhaps there should be 
a (small) bound on the number of leaders as well. We will not necessarily 
assume that a cell has a single leader, which brings us a surprise: Which 
of the posets in figure 2.5 is better? (The reader may wish to pause to 
consider this before continuing.)

Let us count the cutsets. It helps to have the following notation.

Notation. Let Cutsets (a1,a2,a��,a4,a5) denote the number of cutsets 
of size 1, 2, ��, 4, 5, respectively.

To calculate cutsets, it often helps to know the minimal cutsets. 
These are subsets that are just barely cutsets: no smaller subset of a 
minimal cutset is a cutset.26

Example. The poset in figure 2.5(ii) has �� minimal cutsets: 2 of size 
2 (ab and ae) and 1 of size �� (cde). The cutset cde is minimal because 
none of cd, ce, or de is a cutset. (For example, the maximal chain ae 
misses cd, showing that cd is not a cutset.)

We will use the vector notation just established for minimal cutsets 
as well. (For us a “vector” is just a sequence of numbers.) So for the 
poset in figure 2.5(i), we write Min Cutsets (1,0,0,1,0) to indicate that 
there is 1 minimal cutset of size 1 (the leader), and 1 of size 4 (capture 
all 4 of the followers).

The surprise is that we have intuitively surmised that the flat structure 
of figure 2.5(i) ought to be the best, but the structure of figure 2.5(ii) 
has fewer cutsets of all sizes: both have the same number of ��-, 4-, or 
5-member cutsets, but poset P has more 2-element cutsets than Q (4 
versus 2), and Q lacks the vulnerability we noted with P: poset Q has 
no 1-member cutsets, compared to P’s 1. This means that, while there 
is a chance of disrupting P by taking out one individual, there is no 
chance of this happening with Q.

Both P and Q have the same number of members and the same 
number of maximal chains (in this case, just the number of edges); but 
there seems to be no intuitive way to see that the structure Q is better. 
Intuition alone cannot be our guide; we must prove theorems.
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We have elsewhere looked at all 6�� five-member posets to calculate 
how many cutsets and minimal cutsets they have of each size. It is not 
clear how one could compare a poset that has Cutsets (1,4,8,5,1) with a 
poset that has Cutsets (0,5,9,5,1). The former has the aforementioned 
vulnerabilityit can be disrupted by capturing a single person (namely, 
the leader)whereas the latter poset cannot be so disrupted; but the 
latter poset has more cutsets of size 2 or �� (with exactly the same 
number of cutsets of size 4 or 5 as the first poset). Which is better? A 
solution for now is to only compare posets whose smallest cutsets have 
the same size xfor instance, 2 in the case of second poset. Terrorist 
groups can then choose among structures for which there is no chance 
of disruption if fewer than x people are captured.27

The smallest x can be is 1; this is the case if the cell has a single leader 
(which seems to be the most reasonable case28). The smallest non-trivial 
value of b is 2binary posets. And the simplest structures to consider 
are trees. So we will next examine binary trees.

Binary Trees

Examples of trees were given earlier. The simplest characterization 
is the following: a tree is a connected poset whose diagram does not 
contain the “V” shape of figure 2.6. Equivalently, a tree is a poset with 
a single leader (called the root) such that no member has more than one 
immediate superior. Thus the poset in figure 2.8 is a tree, but the poset 
in figure 2.7 is not.29 We also saw a tree in figure 2.��. The technical 
definition is as follows.

Definition. A connected poset is a tree if, for any member p, the set 
of superiors of p forms a chain.

When most people think of “binary trees” (for instance, in computer 
science), they often think of trees like those in figure 1.14. All nodes 
except for the minimal ones (called leaves when we are talking about 
trees) have exactly b=2 immediate subordinates. The diagrams are 
pleasingly symmetric and, as the name binary suggests, the number of 
members is always a power of 2 minus 1. We cannot expect terrorist 
cells to oblige us and organize themselves only into cells of size ��, 7, 
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or 15, however; so we formulate the following (slightly informal) 
definition.

Definition. A binary tree is complete if every node has 2 immediate 
subordinates as far down as you are able to go; at most one node has 1 
immediate subordinate; and the rest have none.

The trees of figure 1.14 and figure ��.1(iii) are complete, as is the 
binary tree of figure 2.8, but not the binary tree of figure 2.9(ii).

Intuition suggests that the best binary tree will be a complete one: 
these ought to have the most maximal chains, and the more maximal 
chains you have, the more people you might need to capture in order 
to break all the chains of command.��0 Hence, there ought to be fewer 
cutsetsor so intuition suggests.

Let us test our intuition. There are exactly six 5-member binary trees 
(figure 2.9). The best 5-member binary tree is indeed the complete one 
[figure 2.9(i)].

At first it seems reasonable to believe that if small “pruning” operations 
were done on trees, turning them into complete binary trees step by 
step, then the cutset vector would improve. Indeed, as one goes from 
figure 2.9(vi) to (v) to (iv) to (ii) to (i), the number of cutsets of each 
size grows smaller. (Looking at 2-member cutsets, for instance, the 
number shrinks from 10 to 10 to 9 to 7 to 5.)

Another strategy is just to directly compare an arbitrary binary tree 
with the complete binary tree having the same number of members, 
to see if the latter has the fewest cutsets.��1 It behooves us therefore to 
know how many cutsets complete binary trees have, which we do in 
Appendix 0, where we start by examining the balanced ones, that is, 
the ones whose size is a power of 2 minus 1.

3. The Main TheoreM

We expect that readers who are not mathematically inclined will 
only skim this section. The main result is that the special pure fishbone 
posets of Corollaries A0.1 and A0.2 have the fewest k-member cutsets 
among all n-member binary trees. Indeed, the analogue of this result 
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was extended by Campos, Chvátal, Devroye, and Taslakian to all b-ary 
trees. Our exposition is taken from Campos, Chvátal, Devroye, and 
Taslakian 2007.

Definition 3.1. Let n≥1 and let b≥2. The n-element special pure 
fishbone b-ary poset is like the fishbone posets of Corollaries A0.1 and 
A0.2, only the nodes with immediate subordinates instead all have b 
immediate subordinates, with the possible exception of the lowest such 
node, which is given as many immediate subordinates as possible so 
that the whole poset has n members.

Definition 3.2. Given trees T and U with n members, we will write 
T►U to mean that Cut(T,k)≥Cut(U,k) for all k=1, 2, …, n and that 
Cut(T,k)>Cut(U,k) for at least one of these values of k.

Theorem 3.1 (Campos, Chvátal, Devroye, and Taslakian 2007). Let 
n≥1 and let b≥2. Let T be a b-ary tree with n members. Let F be the 
special pure fishbone b-ary poset with n members.

Then either T►F or else T=F.

Definition 3.3. If x is a member of a tree T other than the leader, 
denote its unique immediate superior by sup(T,x).

Lemma 3.1. Let T be a tree. Let x and y be members of T such that 
x is not the leader and y is a superior of sup(T,x) [that is, y>sup(T,x)]. 
Define a new tree U with the same set of members as T, only for every 
member z of T that is not the leader,

sup( , ) if 
sup( , )

 if .
T z z x

U z
y z x

≠
=  =

Then T►U.

Example 3.1. See figures ��.1(i) and ��.1(ii). 

Proof of Lemma 3.1. If z is a foot soldier of T, then z is a foot soldier 
of U, and every node on the maximal chain of command in U from the 
leader to z lies on the chain of command from the leader to z in T. It 
follows that every cutset of U is a cutset of T, so that Cut(T,k)≥Cut(U,k) 
for all k.
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Now consider the cutset C that consists of sup(T,x) and all foot 
soldiers of T that are not subordinates of sup(T,x). This is a cutset of T 
but not of U. [In Example ��.1 and figure ��.1(i), C is the set {v,w}. This 
is clearly not a cutset of figure ��.1(ii): {u,x,y} is a maximal chain of U 
that does not intersect C.] ■

Lemma 3.2. Let T be a tree. Let x and y be members of T such that 
x is neither the leader nor a foot soldier, and y is a foot soldier that is 
a subordinate of a subordinate of sup(x), but y is not a subordinate of 
x. [That is, there is a member w of T such that w≠x and y<w<sup(x).] 
Define a new tree U with the same set of members as T, only for every 
member z of T that is not the leader,

sup( , ) if sup( , )
sup( , )

 if sup( , ) .
T z T z x

U z
y T z x

≠
=  =

Then T►U.

Example 3.2. See figures ��.1(iii) and ��.1(iv). 

Proof of Lemma 3.2. Given any set S of members of U, define
if  contains  or a superior of  in 

( )
{ } {y} otherwise.

S S y y U
f S

S x


=  − ∪

[In Example ��.2, f({t,u,w})={t,u,w}, but f({u,w})={u,w,y} and 
f({u,w,x})={u,w,y}.] If S is a cutset of U, then f(S) is a cutset of T. [In 
our example, {u,v,w,x} is a cutset of U, and f({u,v,w,x})={u,v,w,y} is a 
cutset of T.] Also, S and f(S) have the same number of members. If 
R and S are distinct subsets of U but f(R)=f(S), then one of R and S 
contains neither x nor a superior of x in U; hence it is not a cutset of U. 
Thus Cut(T,k)≥Cut(U,k) for all k.

Now consider the cutset S of T consisting of sup(T,y) and all foot 
soldiers of T that are not subordinates of sup(T,y): there is no cutset R 
of U such that f(R)=S. [In our example, S={t,v,w}.] ■

{y}
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Proof of Theorem 3.1. Assume there is no b-ary tree U with n members 
such that T►U. Lemma ��.2 implies that two distinct nodes that are 
not foot soldiers cannot have the same immediate superior. By Lemma 
��.1, every node that is not a foot soldier, except possibly the lowest one, 
has exactly b immediate subordinates. Hence T=F. ■

The “Best” Cell Structures, Independent of 
Cutset Size

Elsewhere we have calculated the number of cutsets and minimal 
cutsets of all sizes for all posets with at most 5 members. The labeling 
scheme indicates the number of superior-subordinate pairs (“non-trivial 
incomparability relations”) in a poset. For instance, the 5-member 
poset 6g (figure ��.2) has 6 superior-subordinate pairs: ab, ac, bc, dc, 
ae, and de. (Note that this is different from the number of edges in the 
graph.) Starting from the n-member antichain, you can obtain all n-
member posets by adding one superior-subordinate pair at a time [up to 

2
n 

 
 

, for the n member chain]. For instance, figure ��.�� shows that one 

can add a superior-subordinate pair to the 4-member poset ��c in three 
different ways. The extra pair is shown in bold in each of the three 
augmented posets. (The bold line between diagrams indicates that the 
number of cutsets is decreasing when you would expect it to increase. 
See below.) In general, we merely list the posets you get by removing a 
superior-subordinate pair or by adding one.

 

As an aside, note that in almost every case, the number of cutsets 
increases when a superior-subordinate pair is added. 

We can write down all of the cases where the number of cutsets 
decreases when a superior-subordinate pair is added. We have done it 
for 4- and 5-member posets.

Problem. Let P and Q be n-member posets such that Q is obtained 
from P by the addition of one superior-subordinate pair. Let (p1,…,pn) 
and (q1,…,qn) be the cutset vectors of P and Q respectively. Can one 
characterize, in terms of the structures of P and Q, the situations where it 
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is not the case that, for 1≤i≤n, pi≤qi? Can one characterize the situations 
where, for 1≤i≤n, pi≥qi? 

Using the information at our disposal, we can determine the best 1-, 
2-, ��-, 4-, 5-, and 6-member posets in various categoriesthat is, the 
posets that, in their respective categories, have fewer cutsets than any 
other regardless of cutset size.

n=1
There is only one 1-member poset.

n=2
There is only one connected 2-member poset, the chain (figure 

��.4).

n=3
The best connected posets are 2a and 2b (figure ��.5). The best 

connected poset with a single leader is 2b. (It happens to be a tree.)

n=4
The best connected 4-member poset is 4b (figure ��.6). The best 

binary poset with a single leader is 4c. (It happens to be a treeindeed, 
one of the special pure fishbone posets of Corollary A0.2.)

n=5
The best connected 5-member posets are 6b and 6k (figure ��.7). 

The best connected 5-member binary poset is 6b. The best binary 5-
member connected poset with at most two leaders is 4g. The best binary 
5-member poset with at most two leaders is 4h. The best binary 5-
member poset with a single leader is 6l. It happens to be a treeindeed, 
one of the special pure fishbone posets of Corollary A0.1. 

n=6
Using Lemma A0.1, we see that the best 6-member binary poset 

with a single leader is obtained from figure ��.7(iv) by adding a leader. 
The resulting poset (figure ��.8) happens to be a treeindeed, one of 
the special pure fishbone posets of Corollary A0.2.
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Problem. Does the trend we see for 1≤n≤6 continue for n≥7, namely, 
that the best binary poset with a single leader is one of the special pure 
fishbone posets of Corollary A0.1 or A0.2?

Reality Check

The mathematics says that the special pure fishbone posets are optimal. 
But are they realistic? For instance, they have many short maximal chains 
(figure ��.9). Would a field operative be an immediate subordinate of 
a cell leader? Chin Peng, leader of the Malayan Communist Party 
during the so-called “Emergency,” describes a situation that suggests 
the answer is yes—that, indeed, like our fishbone posets, there may just 
be one such field operative. He reports that message “couriers never 
learned of the exact location of the camps nor met guerrilla leaders,” his 
key courier being “the one exception to these rules.” (Chin 200��, pp. 
����6, ��88) Senior Al Qaeda theorist Abu Mus‘ab al-Suri has cautioned 
that previous jihads failed because foot soldiers did not have a personal 
connection to the leaders (Brachman and McCants 2006, p. ��15). So 
a “James Bond”—an operative who reports directly to the head of his 
organization—might indeed be realistic. Brams, Mutlu, and Ramirez 
2006 draw “influence posets” for figures connected to the September 
11 plot; see their paper for a discussion of the short maximal chains (see 
also the diagrams in Krebs 2002 and Krebs 2006).

Fishbone posets also have long maximal chains (figure ��.10). Earlier 
it was suggested that terrorist cells might only have four or five levels 
at most. But such a restriction to four levels, for a 15-member binary 
tree cell, would force it to be a complete binary tree, without any 
consideration of cutsets, so our entire analysis would be irrelevant. Yet, 
it seems as if securing the chains of command should matter to the 
designer of a terrorist cell.

Bernard Brooks (personal communication 2006) uses the following 
heuristic to justify the structure of fishbone posets: the head of an 
organization may have a “right-hand man” who has no interest in 
having his own organization; he may also have a protégé, who would 
have a version of the same hierarchy beneath him.
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Problems for Future Research

Problem 1. Calculate the (minimal) cutset vectors for small posets 
(at least size 7 or 8).��2 Is there a “best” poset? Or are there several “best” 
posets? Can something be seen concerning their structure?

Problem 2. Do our results extend to all posets with a single leader?

We found that, up to n=6 at least, the best binary poset with a single 
leader was a tree. Does this result hold for n≥7? 

One way to attack this problem might be to consider spanning 
trees of graphs. (See the matroid theory text, Oxley 199��.) For every 
connected graph with n nodes, you can find a collection of edges that 
form a graph-theoretic tree with n nodes, a spanning tree. There may be 
more than one spanning tree [figures ��.11(ii) and (iii)]. 

As Bernd Schröder has pointed out (personal communication 2006), 
all posets with a single leader have a spanning tree that is also a tree 
when considered as a poset; perhaps one can show that this tree (or one 
of those trees) has fewer cutsets than the original poset.����

This would mean that, to find the perfect terrorist cell with a single 
leader, we would only have to consider trees. This would be exciting 
since it would be an a priori justification (in the sense of Kant) for 
organizing cells as trees (as opposed to the heuristic justifications given 
earlier).

4. Conclusions
No proposition Euclid wrote, 
No formulae the text-books know, 
Will turn the bullet from your coat, 
Or ward the tulwar’s downward blow 
Strike hard who cares—shoot straight who can—
The odds are on the cheaper man.

  — Rudyard Kipling, “Arithmetic on the Frontier”
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Models are not perfect. Spulak and Turnley write, “Portraying 
terrorist groups as social networks…presents an untrue impression that 
the analysis has the accuracy and predictive power of physical theories.” 
(Spulak and Turnley 2005, p. 15) We agree with them, and with Sagan 
2004 and McGough 2005, who have suggested that human systems 
cannot be subjected to an engineering systems analysis without at least 
some reflection.

In his essay “Lewis F. Richardson’s Mathematical Theory of 
War,” Anatol Rapoport observes, “A mathematical model is more 
characteristically a point of departure rather than a point of arrival in 
the construction of a theory,” adding,“the builder of a mathematical 
social science must virtually pull assumptions out of his hat.” (Rapoport 
1957, pp. 258, 281) Models can always be made more sophisticated, 
but the modeler should nonetheless endeavor to avoid the mistake of 
Lewis Carroll’s mapmaker. There are also other aspects besides reliability 
that one might wish to optimize for, such as susceptibility to betrayals. 
(See Gunther and Hartnell 1978.) With our assumptions, we have 
found that the n-member terrorist cell organized as a b-ary tree is least 
likely to be disrupted when it is structured like the special pure b-ary 
fishbone poset (of Corollary A0.1 or A0.2, when b equals 2). It would 
now be interesting to see if examples could be found of terrorist or 
insurgent networks organizing in this way. It would also be interesting 
to see how much better the “perfect” or most efficient cell structure is 
than other common cell structures. Our ideas could be pushed further, 
to handle more general categories of cell structures, not just (binary) 
trees. And of course, if our assumptions are accepted, the same ideas 
could be applied to designing the “perfect” organizational structure 
for counterinsurgency teams. Wein suggests that perhaps government 
forces could do a game-theoretic analysis: given that the terrorists 
form the “perfect” cell, what are the optimal ways of combating it.��4 
Paté-Cornell adds that perhaps there should be multiple layers of links, 
representing different types of networks (communications, financial, 
etc.), and some sort of scale to indicate the intensity of the link 
(whatever that is).��5

Terrorism is not an academic subject. When academics suggest new 
tools for combating terrorism, we should be skeptical. This is especially 
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true when it comes to an abstruse field such as mathematics and, in 
particular, order theory.

Yet it remains true that, in the war on terror, decisions have to be 
madequantitative decisions, concerning the allocation of resources, 
money, and manpower. Our methods should help law enforcement 
and intelligence agencies make these decisionsor at least give 
them credible arguments with which to defend their decisions before 
the public and congressional oversight committees.

Our tools help answer the question, “Have we disabled a terrorist 
cell, or is it still capable of carrying out attacks?” While we cannot 
answer such a question with certainty, our methods help us determine 
the probability that we have disrupted a particular terrorist cell.

We treat the cell Γ as an ordered set, a network with a built-in hierarchy 
(leaders, foot soldiers, and so on). We say that a terrorist cell has been 
rendered incapable of carrying out attacks if we have broken the chains 
of command, that is, disrupted every possible line of communication 
between leaders and foot soldiers. We do this by capturing or killing 
terrorists who collectively form a cutset of the ordered set. By counting 
all of the cutsets with k members in Γ, we can compute the probability 
Pr(Γ,k) of disrupting Γ by capturing or killing k of its members.

In conclusion, while the model can be improved, we do not believe 
our assumptions do too much violence to the real world. We hope 
others can use our approach to help reduce violence in the real world.
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Figures

Figure 1.1(i).  A graph representing the alleged September 11 hijackers 
(Krebs 2002; used by permission).
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George Donald

Dick Condi

Figure 1.1(ii).  A graph representing the U.S. government’s executive 
branch.

Figure 1.2.  Detection of terrorist network from communications traffic.
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Figure 1.3(i).  Network breaking.

Figure 1.3(ii).  Network breaking.
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Figure 1.4(i).  Attacking a terrorist network.

Figure 1.4(ii).  Mission accomplished?



Toward a MaTheMaTical Theory of counTerTerrorisM ��1

James Mary RobinJames Mary RobinJames Mary Robin

James

Mary

Robin

James

Mary

Robin

James

Mary

RobinJames

Mary

Robin

James

Mary

RobinJames

Mary

Robin

Figure 1.5(i).  A graph.

Figure 1.5(ii).  A poset with the same graph.

Figure 1.5(iii).  A different poset with the same graph.
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Figure 1.6(i).  A chain of numbers.
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Sanders

Tom
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Figure 1.6(ii).  A chain of people.

Figure 1.7.  Simulating the chains of command.

Figure 1.8.  Simulating the removal of people from the cell.
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Figure 1.9.  Modeling terrorist cells as partially ordered sets.

Jean-Claude

Sylvester Arnold

Mel

Figure 1.10.  A graph illustrating an organization.

Figure 1.11(i).  A graph illustrating a terrorist network Γ.
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Figure 1.11(ii).  The graph Γ after agent A is captured.

Figure 1.11(iii).  The graph Γ of (i) is disconnected after the capture of 
terrorist agents E and G.
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Figure 1.12.  A graph Γ of a terrorist cell.

Figure 1.13.  The terrorist cell Γ after the capture of two agents.
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Figure 1.14.  A “binary tree” T.
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Figure 1.15(i).  A 
terrorist cell Γ 

before agent B is 
captured.

Figure 1.15(ii).  The 
terrorist cell Γ after 
agent B is captured.

Figure 1.15(iii).  
The terrorist 
cell Γ after a 

reorganization.
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□   □   □   □   □
A   B   C   D   E

Figure 2.1.  An antichain.

Figure 2.2.  Is the flat structure ideal?

Figure 2.3.  A ternary tree that is not binary.

Figure 2.4.  Would a terrorist cell have this many “leaders”?
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Poset P

Min Cutsets (1,0,0,1,0)
Cutsets (1,4,6,5,1)

Figure 2.5(i).  Which poset is better?

Poset Q

Min Cutsets (0,2,1,0,0)  (ab,ae;cde)
Cutsets (0,2,6,5,1)

a b

c d e
Figure 2.5(ii).  Which poset is better?

Figure 2.6.   A forbidden “covering subposet” for a tree.

Figure 2.7.   A poset that is not a tree.
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Figure 2.8.  A complete binary tree.

Cutsets (1,5,9,5,1)Cutsets (1,5,9,5,1)

Figure 2.9(i).  A 5-member binary tree.

Cutsets (1,7,9,5,1)Cutsets (1,7,9,5,1)

Figure 2.9(ii).  A 5-member binary tree.

Cutsets (1,8,10,5,1)Cutsets (1,8,10,5,1)

Figure 2.9(iii).  A 5-member binary tree.

Cutsets (2,9,10,5,1)Cutsets (2,9,10,5,1)

Figure 2.9(iv).  A 5-member binary tree.
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Cutsets (3,10,10,5,1)Cutsets (3,10,10,5,1)

Figure 2.9(v).  A 5-member binary tree.

Cutsets (5,10,10,5,1)

Figure 2.9(vi).  A 5-member binary tree.

Figure 3.1(i).  A tree T illustrating Lemma 3.1.

Figure 3.1(ii).  The tree U illustrating Lemma 3.1.
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Figure 3.1(iii).  The tree T illustrating Lemma 3.2.

Figure 3.1(iv).  The tree U illustrating Lemma 3.2.
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e

Figure 3.2.  The 5-member poset 6g.
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Figure 3.3.  Adding superior-subordinate pairs to a poset.

Figure 3.4.  The only (hence, the best) connected 2-member cell.

2a 2b

Figure 3.5(i).  The best connected 3-member posets.

2b

Figure 3.5(ii). The best connected 3-member poset with a single leader.
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4b

Figure 3.6(i).  The best connected 4-member poset.

4c

Figure 3.6(ii).  The best 4-member binary poset with a single leader.

6b

6k

Figure 3.7(i).  The best 5-member connected posets.



Toward a MaTheMaTical Theory of counTerTerrorisM44

6b

Figure 3.7(ii).  The best 5-member binary connected poset.

4g

Figure 3.7(iii).  The best binary 5-member connected poset with 
at most 2 leaders.

4h

Figure 3.7(iv). The best binary 5-member poset with at most 2 leaders.

6l

Figure 3.7(v). The best binary 5-member poset with a single leader.
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Figure 3.8. The best binary 6-member poset with a single leader.

Figure 3.9.  Are such short maximal chains realistic?

Figure 3.10.  Are such long maximal chains realistic?
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Figure 3.11(i).  A connected graph G.

Graph G

Figure 3.11(ii).  A spanning tree of G.

Figure 3.11(iii).  A spanning tree of G.
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4b

Cutsets (0,2,4,1)

Figure 3.12(i). A four-crown tower

Cutsets (0,3,12,15,6,1)

Figure 3.12(ii). A four-crown tower

Cutsets (1,9,27,35,21,7,1)

Figure 3.12(iii).  A binary poset with a single leader.
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Appendix 0.

Counting Cutsets in Complete Binary 
Trees36

Let us consider the complete binary trees with n=2m-1 members. 
When m=��, we have n=7 (figure A0.1). The minimal cutsets are as 
follows:

Minimal 1-member cutset:  a
Minimal 2-member cutset:  bc
Minimal ��-member cutsets:  bfg cde
Minimal 4-member cutset:  defg

The cutset and minimal cutset vectors are shown in figure A0.1.

Let us see how to calculate the number of m-member cutsets. (Recall 
that m=��.) Remember that every cutset must contain one of the five 
minimal ones. We will try to list all the cutsets that contain a; then all 
the cutsets that contain bc but not a; then all the cutsets that contain 
bfg but not a or bc; then all the cutsets that contain cde but not a, bc, or 
bfg; then all the cutsets that contain defg but not a, bc, bfg, or cde. Note 
that any subset containing a cutset is also a cutset.

The 3-member cutsets containing a. Any subset containing a is a cutset, 
so we can take a and any 2 of the remaining 6 members of the tree; so 
that are 6C2=15 such cutsets.

The remaining 3-member cutsets containing bc. We already have bc, so 
we can take 1 of the remaining 4 members of the tree (4 not 5 since we 
have already counted the cutsets containing the 5th element a). So there 
are 4C1=4 such cutsets.

The remaining 3-member cutsets containing bfg. The cutset bfg already 
has �� members, so there is just this 1 cutset.

The remaining 3-member cutsets containing cde. Again, there is just 
1.
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The remaining 3-member cutsets containing defg. There are no ��-
member cutsets containing a 4-member set.

Thus the total number of ��-member cutsets is 15+4+1+1+0=21. 
Looking at row 7 of Al-Karaji’s triangle (Table A1.1), this happens to 
equal nC2. Indeed, looking at the cutset vector in figure A0.1, the first 
m entries happen to equal the first m entries in row n of Al-Karaji’s 

triangle. Additionally, we found earlier that there were       
4-member 

cutsets of a complete binary tree with 15=24-1 members. Unless this is 
a total coincidence, it suggests the following result:

Proposition A0.1. Let m≥1. Let T be the complete binary tree with 
n=2m-1 members. Then for 1≤k≤m, the number of k-member cutsets 

is
 







−1k
n .

Before we prove this, we record the following (the proofs are clear):

Lemma A0.1. Let P be an n-member poset with a single leader r. 

Then the number of k-member cutsets containing r is 





−
−

1
1

k
n .■

Lemma A0.2. Let T be a tree such that the root r has exactly two 
immediate subordinates. Then if we ignore the root, we are left with two 
smaller trees T1 and T2 that have no edges between them. (We denote 
this situation by writing T1+T2.) The cutsets of T not containing r are 
just the cutsets of T1+T2. Every k-member cutset of T1+T2 consists of a 
k1-member cutset of T1 and a k2-member cutset of T2, where 1≤k1,k2≤k-
1 and k1+k2=k. (Thus there are no 0- or 1-member cutsets of T1+T2.) 
Moreover, if 1≤k1,k2≤k-1 and k1+k2=k, when we combine a k1-member 
cutset of T1 with a k2-member cutset of T2, we obtain a k-member 
cutset of T1+T2.■

Example. Let T be the binary tree of figure A0.2(i).

1-member cutsets of T1: a b
2-member cutset of T1: ab

15
3 





−1k
n






−1k
n
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1-member cutset of T2: c
2-member cutsets of T2: cd ce de

Thus all the ��-member cutsets of T not containing r are:

 acd ace ade bcd bce bde
 abc

Proof of Proposition A0.1. If m=1 then n=21-1=1 and k can only take 
the value 1 (since 1≤k≤m), so T has only 1 member, and sure enough 

there is just one 1-member cutset, and 1 equals 





0
1 = 





−1k
n .

If m≥2, then n≥��, so the root r of T has exactly two immediate 
subordinates. (Remember T is a complete binary tree.) Let T1 and T2 
be the (identically-structured) subtrees obtained if we remove r from 
T. Note that T1 and T2 are also complete binary trees of size n1=n2=

2
1−n =2m-1-1. If k=1, then clearly there is only one 1-member cutset of 

T, namely, r itself, so

|Cut(T,1)|=1= 





0
n

as we sought to show. So finally suppose 2≤k≤m. Let us first count 
the cutsets containing r, then the cutsets not containing r. According 

to Lemma A0.1, there are 





−
−

1
1

k
n

 cutsets containing r. According to
 

Lemma A0.2, the number of cutsets not containing r is

∑
≤≤
=+

 1-,1

2211

21

21

|),Cut(| |),Cut(|(*)

kkk
kkk

kTkT

By induction we can assume that the statement of the proposition 
is true for trees strictly smaller than T (i.e., T1 and T2), so we can assert 
that
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and similarly

Thus the number of cutsets not containing r is, from (*),

or

Clearly this is just the number of ways to pull k-2 objects from a 

pool of n-1 objects, i.e., 





−
−

2
1

k
n . (Simply artificially split the n-1objects

 
into two groups, each with 

2
1−n  objects; choose a objects from the first 

group and (k-2)-a objects from the other.)

Thus the total number of k-member cutsets of T is

By properties of Al-Karaji’s triangle (see Appendix 1), this equals 





−1k
n

,

 as we sought to show.■

The following problem will only be of interest to those familiar with 
ideas from enumerative combinatorics (Stanley 1997):
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Problem.37 What is the “bijective” proof of Proposition A0.1? That 
is, what is a natural one-to-one correspondence between k-member 
cutsets of T and (k-1)-member subsets of T (for 1≤k≤m)?

Note that Proposition A0.1 only tells us the number of k-member 
cutsets of an n-member complete binary tree when n=2m-1 and 1≤k≤m. 
We do not know |Cut(T,k)| when n is not of this special form (a power 
of 2 minus 1) or, even if n has this form, when k is bigger than m; but 
we can make some progress on the latter question. Let us consider 
counting k-member cutsets when k=m+1.

Table A0.1 lists the k-member cutsets in a complete binary tree 
with n=2m-1 members for m=1, 2, and �� (i.e., for n=1, ��, and 7). We 

compare this with the quantity 





−1k
n

= 





m
n

 occurring in the statement 

of Proposition A0.1 for m=1, 2, ��, and 4 (i.e., n=1, ��, 7, and 15). The 
entries in the last column can be obtained as follows: For m=1 (n=1), 
clearly there are no 2-member subsets in a 1-member set. For m=2 
(n=��), there is only one ��-member cutset, the entire tree. For m=�� 
(n=7), we can count 4-member cutsets the way we counted ��-member 
cutsets in figure A0.1: We can take a and any �� of the remaining 6 
members; bc and any 2 of the remaining 4 members; bfg and any 1 of 
the remaining 2 members; cde and any 1 of the remaining 2 members; 
or defg for a total of

(It should now be clear that the number of 5-member cutsets is

and the number of 6-member cutsets is

The reader now has enough information to guesswithout having 
to countwhat number should go into the last box of the last column 
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of Table A0.1: that is, how many 5-member cutsets are in a 15-member 
complete binary tree? (The reader may wish to pause here before going 
on.)��8

To confirm our intuition that the complete binary trees have the 
fewest cutsets, let us compare the number of ��-member cutsets in the 
7-member complete binary tree T of figure A0.1which we calculated 
to be 21with the number of ��-member cutsets in the binary tree F 
of figure A0.��(i). Let us calculate the minimal cutsets (Table A0.2). 
The last column is computed as follows. The first entry (1) is clear. The 

second entry is .7161
1
6

=+=+





 The third entry is

The fourth entry is

We note that
         |Cut(F,��)|=20<21=|Cut(T,��)|,

so, contrary to what our intuition told us, complete binary trees are 
not optimal after all. So what trees, if any, are optimal?

Fishbone Posets

Let us make a new guess that binary trees of the type in figure A0.�� 
are optimal. Intuition has led us astray; now we must resort to logic 
and to proof. Is there some way we can describe such posets?

Firstly, they have a long spine, and then spokes or ribs protruding 
from the spine at various vertebrae. The following definition makes 
this precise. The parameter s is the number of nodes along the spine; t 
is the number of ribs; and v1, …, vt are the locations of the vertebrae 
where those ribs are joined.

.2014151
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Definition A0.1. Let s≥1. Let 0≤t≤s-1. Let
1≤v1<···<vt<s.

Let F:=F(s,t;v1,…,vt) be the poset with s+t members {p1,…,ps,q1,…,qt} 
such that

p1>···>ps

pv1>q1
pv2

>q2
·
·
·

pvt
>qt

with no other non-trivial comparabilities. We call F a pure fishbone 
poset of type (s,t;v1,…,vt;s+t).

Example. The binary tree of figure A0.��(i) is a pure fishbone poset 
of type (4,��;1,2,��;7). The binary tree G of figure A0.��(ii) is a pure 
fishbone poset of type (5,2;1,��;7). Let us count the minimal cutsets of 
G (Table A0.��). As before, the first entry of the last column (1) is clear. 
The second entry is

The third entry is

The fourth entry is

The point of introducing pure fishbone posets is that all binary trees 
have a “frame” that is a pure fishbone poset. This fact can be used to 
get a lower bound for the number of cutsets (Proposition A0.��). For 
example, the complete binary tree with 15 members in figure 1.14 
has as a “frame” the pure fishbone poset of figure A0.4 (ii); see figure 
A0.4(i). To precisely define what we mean by “frame,” we resort to the 
following. (Note that instead of saying a poset X has a frame that is a 
pure fishbone poset, we simply say that X is a fishbone poset.)
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Definition A0.2. Let F be the poset of Definition A0.1. A poset X 
with n members is called a fishbone poset of type (s,t;v1,…,vt;n) if

 (a) F is a subposet of X
 (b) Every member of X besides p1,…,ps-1 is subordinate or   

  equal to one of ps, q1, …, qt.
We also say X is a fishbone poset of type (s;n).
Note that the spine of the tree with n=15 members in figure A0.4(i) 
has s=4 nodes and that 4=��+1=log215+1.

Proposition A0.2 Let n≥1. Let s:=log2n+1. A binary tree with n 
members is a fishbone poset of type (s;n).

Proof. A binary tree with n members has a maximal chain whose top 
s members are

p1> p2>···>ps
where p1 is the root of the tree. Let t be the size of the set

{1≤i≤s-1| pi has an immediate subordinate besides pi+1};
Let v1<···<vt be the numbers in this set and let q1, …, qt be the respective 
immediate subordinates. The pure fishbone poset F(s,t;v1,…,vt) of 
Definition A0.1 meets the conditions of Definition A0.2 with respect 
to the original tree X.■

Proposition A0.3. Let k, n, s≥1. Let 0≤t≤s-1. Let v0:=0 and vt+1:=s; 
and let 1≤v1<···<vt<s. Let X be a fishbone poset of type (s,t;v1,…,vt;n).

Then |Cut(X,k)| is at least equal to
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with equality if X is pure (i.e., n=s+t).

There are s terms in the above sum. If 1≤l≤s, then the l-th term is

where I is the largest number i such that 0≤i≤t and vi<l.

Proof. Each term corresponds to a minimal cutset
{pl}∪{qi|1≤i≤t and vi<l}       (1≤l≤s);

it is clear that the l-th term is
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Among the pure fishbone posets, two special ones will turn out to 
be of interest, depending on whether n is odd (Corollary A0.1) or even 
(Corollary A0.2).

Corollary A0.1. Let k, r≥1. Let n:=2r-1. Let F be a pure fishbone 
poset of type (r,r-1;1,2,…,r-1;n).

Then |Cut(F,k)| equals







−

−−
+





−−
−−

++





−
−

+





−
−

+





−
−

rk
rn

rk
rn

k
n

k
n

k
n )12(

)1(
)32(

3
5

2
3

1
1

 .■

Example. Consider the pure fishbone poset of figure A0.��(i). Here 
n=7, so r=4. Thus |Cut(F,��)| equals

and |Cut(F,4)| equals

as we computed in Table A0.2.

Corollary A0.2. Let k≥1. Let r≥2. Let n:=2r-2. Let F be a pure 
fishbone poset of type (r,r-2;1,2,…,r-2;n).
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Then |Cut(F,k)| equals
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Example A0.1. Consider the pure fishbone poset G of figure A0.5. 
Here n=6 so r=4. Then |Cut(G,1)| equals
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|Cut(G,��)| equals

|Cut(G,4)| equals

|Cut(G,5)| equals
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|Cut(G,6)| equals
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a

b c

d e f g

Min Cutsets (1,1,2,1,0,0,0)
Cutsets (1,7,21,31,21,7,1)Min Cutsets (1,1,2,1,0,0,0)

Cutsets (1,7,21,31,21,7,1)

Figure A0.1.  A complete binary tree.

r

a c

b d e

Tree T

Figure A0.2(i).  A complete binary tree.

a c

b d e

Figure A0.2(ii).  The “forest” T1+T2.

Subtree T1 Subtree T2

Figures
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b=p2

a=p1

c=q1

e=q2

f=p4 g=q3

s=4 t=3
v1=1 v2=2 v3=3

d=p3

Figure A0.3(i).  A pure fishbone poset of type (4,3;1,2,3;7).

c=q1

a=p1

b=p2

f=q2

d=p3

e=p4

g=p5

s=5 t=2
v1=1 v2=3

Figure A0.3(ii).  A pure fishbone poset of type (5,2;1,3;7).

Poset G
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Figure A0.4(i).  Every binary tree is a fishbone poset.

Figure A0.4(ii).  The pure fishbone poset “frame” of the binary 
tree in figure A0.4(i).

Figure A0.5.  A pure fishbone poset of type (4,2;1,2;6).
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Tables

m n nCm # (m+1)-
member
cutsets

1 1 1 0

2 3 3 1

3 7 35 31

4 15 1365 ?

m n nCm # (m+1)-
member
cutsets

1 1 1 0

2 3 3 1

3 7 35 31

4 15 1365 ?

k Minimal k-
member
cutsets

|Cut (F,k)|

1 a 1

2 bc 7

3 cde 20

4 cefg 29

k Minimal k-
member
cutsets

|Cut (F,k)|

1 a 1

2 bc 7

3 cde 20

4 cefg 29

Table A0.2.  Cutsets in a binary tree of figure A0.3.

Table A0.1.  Cutsets of complete binary trees.
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k Minimal k-
member
cutsets

|Cut (G,k)|

1 a 1

2 bc,cd 8

3 cef,cfg 24

4 30

k Minimal k-
member
cutsets

|Cut (G,k)|

1 a 1

2 bc,cd 8

3 cef,cfg 24

4 30

1
11

121
1331

14641
15101051

1615201561
172135352171

Table A1.1.  Al-Karaji’s triangle.

Table A0.3.  Cutsets in a binary tree of figure A0.3.
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aPPendix 1. al-karaji’s Triangle
Suppose you have four people, A, B, C, and D, and you wish to 

select two of them to form a doubles tennis team. (The other two must 
return home.) How many teams can be formed? The answer is 6:

  AB AC AD BC BD CD

This number is denoted 





2
4

 or 4C2, read “4 choose 2.” In general,
 

the number of ways you can choose a set of k objects from among n 

objects is denoted 


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k
n

 or nCk. (If k<0 or k>n, then this number is 0 by 

convention.) An exact formula for nCk when 0≤k≤n is
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where for any r≥1,
r!=r·(r-1)·(r-2)·…·��·2·1

and 0! is defined to be 1. For example,

The number 
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 can also be found by looking at the k-th number 

from the left in the n-th row of Al-Karaji’s triangle (erroneously referred 
to sometimes as Pascal’s triangle). The first few rows are in Table A1.1. 
(The top row is row 0 and the leftmost number in each row is the 
0-th.) The rule for constructing it is that the initial row is a single 1 
(surrounded by 0’s on either side, out to infinity). Given a row, we 
construct the row below it by taking two adjacent numbers, adding 
them, and placing the sum below and between the numbers we have 
added. This corresponds to the identity

.
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Another fact about Al-Karaji’s triangle is that the numbers in each 
row increase up until the middle:
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 4!            4 . 3 . 2 . 1         24        24
2!(4 – 2)!     (2 . 1)(2 . 1)      2 . 2        4  
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where for any real number r, r is the greatest integer less than or equal 
to r and r is the least integer greater than or equal to r. For basic ideas 
see Grinstead and Snell.
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From a leaked 200�� memo (USA Today, October 22, 200��).

Of course the war on terror is not simply about battling terrorist cells, or even 
networks of cells, as one reader of this manuscript has noted: a more important 
goal is to stop the propagation of terrorist cells (see Farley 2007), or even to 
eliminate the causes of terrorism itself.

It is not even an accurate measure. Algeria defeated France, even though the 
French lost 15,000 soldiers and the Algerians nearly one million (Encyclopedia 
Britannica Online 2006).

Note that we are not talking about battling terrorist cells that have already 
received their orders and are completely prepared to execute them; in such cases 
there may no longer be a need for any further communication. We are talking 
about terrorist cells that are in the process of hatching plots that still require 
communication within the cell in order for the plans to be carried out. 

Keefe 2006. In this monograph, the words “network” and “cell” have the same 
meaning. We represent both with the mathematical concepts of graph or poset 
(technical terms with distinct meanings, to be defined later). In the terrorism 
literature, the term “network” is often taken to mean (although often it is not 
spelled out) a loose, non-hierarchically-organized confederation of individuals, 
usually wide-ranging, as in the term “the global Al Qaeda network,” or the 
phrase, “It takes a network to fight a network” (Lewis 2006). When we speak of 
cells or networks, by contrast we will mean a hierarchical structure close to the 
ground, like the nineteen alleged September 11 hijackers. Of course, one might 
try to handle the situation of multiple cells that might be coupled in some way.

See also http://www.firstmonday.org/issues/issue7_4/krebs/.

Technically a poset is a set with a binary relation that is reflexive, transitive, and 
antisymmetric (Davey and Priestley 2002). In this paper, all posets are finite (a 
statement known as Trotter’s Axiom).

Of course it goes without saying that law enforcement would be able to do much 
more if they did know the mode by which terrorists communicated and could 
intercept messages.

Alternatively, we could focus on the communications links between nodes and 
seek to sever (or redirect) these. It would be worthwhile to do the “link” analysis; 
the mathematics involved would be similar to what we do here. In fact, one 
ought to consider the result of removing both nodes and links together.

Again, this only means the cell would be unable to carry out new plans, plans 
that still required communication from above. The cell could still perhaps carry 
out plans that had already been disseminated. 

One could also ask for the number of edges that need to be removed in order for 

1.

2.

��.

4.

5.

6.

7.

8.

9.

10.

11.
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the graph to become disconnected, or the number of nodes and edges.

See, for example, Klerks 2002 and Krebs 2002.

A reader of a draft of this manuscript emphasizes that one could focus on 
edges. Removing edges would be tantamount to preventing terrorists from 
communicating—for instance, by blocking certain cell phones or crashing jihadist 
websites. Focusing on edges also enables one to track the nodes—the senders and 
receivers of messages—and possibly to “hijack” lines of communication so as to 
send confusing, false, or misleading information. We choose to focus on nodes 
instead of edges since the mathematics involved is virtually the same, and hence 
what we do here could be easily mimicked for edges; but our intuition is that, 
from a practical standpoint, there are so many lines of communication available 
to terrorists that it might be impossible to block all the ways one terrorist could 
communicate with another without having a fix on the terrorists themselves.

Indeed, according to the United States Defense Department’s transcript of the 
video allegedly made by Osama bin Laden, bin Laden says, “Those who were 
trained to fly didn’t know the others. One group of people did not know the 
other group.” One might infer, therefore, that at that low level in the network, 
the clusters of nodes corresponding to the hijackers were already disconnected. 
But they posed a danger because it was still possible for orders to filter down 
from above: According to the tape, “[T]hey were trained and we did not 
reveal the operation to them until…just before they boarded the planes.” (U.S. 
Department of Defense 2001) We make no claims about the authenticity of the 
video or the accuracy of the transcript.

Order theory does not preclude looking at edges; indeed, in a partially ordered set, 
the partial order relation—essentially, the set of edges—is at least as important 
as the set of nodes.

See Conclusions for how to incorporate an analysis of edges—and our estimate 
of their strength and nature—in order to construct a better estimate of the 
likelihood that a cell has been disrupted.

These are sets with a binary relation that is reflexive and transitive but not 
necessarily antisymmetric.

Of course, understanding how terrorist cells “heal”—that is, recruit new 
members, acquire new leaders when old ones are captured, with intermediate 
captains moving up in the hierarchy—requires looking at empirical data. For 
instance, how long does it take for a communications link to reform, or for 
nodes to be replaced?

The author would like to thank an attendee of one of his talks for suggesting an 
idea close to this.

Chin Peng believes Malayan communist Lee Meng was captured by the British 
because she was not “made to undertake only one specific task at a time. 
Either she should operate only as a courier under the direction of the Central 
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Committee, or, she should be restricted to guerrilla activities under the state 
committee.” (Chin 200��, p. ��48)

In the case of the alleged September 11 hijackers, for instance, it was not enough 
for the commands to get through to one person, since a team of four or five was 
needed to hijack an aircraft. In cases like this, a single minimal node (or a single 
equivalence class in a quasiorder) might correspond to four or five individuals. 
Also, as Earl Burress (personal communication 2006) has suggested, a terrorist 
cell might want to maximize the chance that paths to at least two minimal nodes 
remain unbroken. The case of the jumbo jet that crashed in New York City 
in November 2001 (“Feds Eye Engines in Air Crash,” CNN.com, November 
12, 2001) was regarded as an accident and not an Al Qaeda attack because 
it was a solitary incident; three planes striking their targets on September 11, 
2001, however, could not be so dismissed. On the other hand, US Federal 
Aviation Administration counterterrorism expert Bogdan Dzakovic states, “If 
I were a terrorist mastermind plotting another big attack…and I could muster 
up another 20 guys, I’d scatter them around to different airports around the 
country. I would give each one of them three bombs and three different sets of 
luggage. Some of those bombs will make it onto flights.” (Katovsky 2006) This 
suggests that perhaps our model—where only one maximal chain need be left 
unblocked—is not so far off the mark. 

We are perhaps being too neglectful of redundancy in communications—for 
instance, a website could be used as a backup in case there is a breakdown in cell 
phone communications—which could be represented by having multiple links 
between two nodes.

Personal communication 2005.

This, as a reader points out, might be viewed as the key, since how cell members 
communicate relates directly to how vulnerable they are to message interception 
and surveillance.

We will not (see White 2002) discuss the ideal size of a terrorist cell based on 
what functions the cell needs to perform (although, as one commentator has 
suggested, this could be incorporated into our model). We will try to determine 
the ideal structure of a terrorist cell given that it has a certain size. Also, the edges 
add another layer of complexity, as in reality there could be multiple edges, two-
way edges, etc., which we do not consider here.

Academics will appreciate the difficulty of managing 18 graduate students 
simultaneously.

To calculate the number of cutsets, you often need to know more than just the 
number of minimal cutsets.

This leads us to consider how terrorist cells adapt once it is discovered that their 
structure is known and hence they cannot be as effective as they would desire. 
Ideas from reflexive control (Thomas 2004) or game theory should also be 
utilized to see how a terrorist cell balances its goals of minimizing the number of 
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cutsets and keeping its structure relatively unknown. Farley (2007) discusses the 
use of cellular automata and the mathematics of diffusion processes; in future 
work we hope to draw on mathematical models of tumor formation to see how 
we might describe the transformation of a terrorist cell as it is being attacked. 
We also hope to use tools from mathematical epidemiology in order to model 
the long-term spread of radical ideologies, viewed as a contagion infecting a 
population. 

Guerrilla forces of the Malayan Communist Party, however, were jointly headed 
by two individuals (Chin 200��, p. 71).

The poset of figure 2.7 is a tree according to graph theory, however. A graph is 
a tree if between any two nodes there is exactly one way to get from one to the 
other. See the directions for further research at the end of the monograph.

We actually have not checked to see if complete binary trees have the most 
maximal chains, nor have we confirmed that there is a relationship between the 
number of cutsets and the number of maximal chains.

Note that there is no reason to believe—just a hope—that there is a “best” binary 
tree, or that there is a “best” tree for all sizes of cutsets. A priori, for trees with 15 
members, there may be several trees that have the smallest possible number of 7-
member cutsets, and another set of trees that have the smallest possible number 
of 8-member cutsets. (Whether or not this is true, we shall see later.)

John Stembridge’s main contribution to the theory of ordered sets has been to 
develop Maple packages and a database of small posets. This could be used for 
Problem 1. (See University of Michigan website of John Stembridge.)

Every finite poset with a single leader has a spanning tree that is also a tree as a 
poset: Let the dual rank of a member x of a finite poset be the size of the largest 
maximal chain in the subposet of elements bigger than x. For each element of 
dual rank k erase all connections to immediate superiors except for one that 
connects to an immediate superior of dual rank k-1. The resulting structure is a 
tree, even with the same dual rank function. 

One might naively believe that a four-crown tower [figure ��.12(i) and (ii); see 
also Farley 1997-1998, figure 2.2] with an additional leader added on would 
be a binary poset with fewer cutsets than its spanning trees, since it has so 
many maximal chains. This is false, however. The four-crown tower with 4 
members [figure ��.12(i)] has cutset vector (0,2,4,1). The four-crown tower with 
6 members [figure ��.12(ii)] has cutset vector (0,��,12,15,6,1): The cutsets consist 
of the cutsets of the four-crown tower with 4 members, and either none or one 
of the new leaders; or both of the leaders along with any subset of the remaining 
four members. Lemma A0.1 gives us the cutsets of figure ��.12(iii). Yet this has 
at least as many cutsets of every cardinality than even the complete binary tree 
with 7 members (see figure A0.1), which has at least as many cutsets of every 
cardinality than the pure fishbone poset with 7 members, which is a spanning 
tree of figure ��.12(iii). We thank Bernd Schröder for suggesting this example.
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Personal communication 2006.

Personal communication 2006.

Readers wishing to refresh themselves on Al-Karaji’s triangle should consult 
Appendix 1.

We are not asserting that this is a difficult problem, merely that it would be 
interesting to obtain the answer.

The laborious calculation is as follows. (An easier method is below.) Consider the 
15-member complete binary tree of figure 1.14. We list the minimal cutsets:
 Minimal 1-member cutset:  A
 Minimal 2-member cutset:  BC
 Minimal ��-member cutsets:  BFG CDE 
 Minimal 4-member cutsets:  BFNO BGLM CDJK  
    CEHI    DEFG
 Minimal 5-member cutsets:  BLMNO CHIJK DEFNO  
   DEGLM DFGJK EFGHI
The number of 5-member cutsets is (we have done this type of calculation several 
times now):

Alternatively, look at the difference between the numbers in the last two 
columns of Table A0.1. Starting with the first row, we get 1, 2, and 4—or 20, 
21, and 22—suggesting that the final difference ought to be 2��=8—that is, the 
final entry in the table ought to be 1��65-8=1��57. This also gives us a conjecture 
for the number of (m+1)-member cutsets in a complete binary tree with n=2m-
1 members. We do not even have a conjecture for the number of k-member 
cutsets where k>m+1.
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